| |
| |
| |
| |
| |
|
个人简历
1998.09-2002.07 澳门十大正规网投平台化工学院学习 获得本科学位
2002.09-2005.04 澳门十大正规网投平台化工学院学习 获得工学硕士学位
2005.07-2011.08 合肥安默飞科技有限公司工作 任职研发工程师、技术部主管
2011.09-2014.05 中国科学技术大学化学与材料科学学院学习,获得工学博士学位
2014.06―至今 澳门十大正规网投平台工作 历任讲师(2014),副教授(2016),教授(2022)
2017.09-2018.09 University of Massachusetts Amherst 国家留学基金全额资助访问学者
主要研究领域、方向
硕士生招生专业:材料学(学术型);材料与化工(专业型)
博士生招生专业:材料学、化学(学术型);能源动力(专业型)
目前的研究方向:
(1)柔性功能高分子及其复合材料的创制和功能化机制;
(2)先进弹性体(液晶、聚氨酯)及其动态交联改性;
(3)高阻隔膜材料加工成型关键技术研发与产业化;
(4)复杂高分子体系的流变学研究。
主讲本科生课程:《高分子物理》、《聚合物基复合材料基础》
主讲研究生课程:《工程伦理》《高分子复合与共混》
研究成果(代表性成果)
(1)在Materials Horizons,Macromolecules, ACS Applied materials & interfaces等国内外学术期刊上发表论文50余篇,申请发明专利9项,已授权专利6项。
(2)水性涂料(空调铝箔亲水涂料、玻璃装饰涂料、金属卷材防腐蚀涂料)的研发和产业化。
目前承担科研项目
1、主持安徽省自然科学基金先进功能膜材料联合基金项目,202309-202608。
2、主持国家自然科学基金(联合基金)项目,202201-202412。
3、主持企业委托项目2项,202206-202505,202304-202603。
4、主持国家自然科学基金(青年科学基金)项目,已结题。
5、主持安徽省自然科学基金面上项目,已结题。
6、主持安徽省科技重大专项项目,已结题。
7、主持企业委托项目3项,已结题。
获奖及专利情况
获奖:
(1)2023年研究生教育教学成果奖一等奖
(2)2023年安徽省科技进步奖二等奖
专利:
授权发明专利6项(第一发明人)
(1)一种动态交联的SBS热熔压敏胶及其制备方法ZL 202111226248.6
(2)一种具有隔离结构的电磁屏蔽环氧复合材料及制备方法ZL 202010352580.6
(3)一种纳米纤维素改性聚乳酸复合材料及其制备方法ZL 201910149420.9
(4)一种聚乳酸改性材料的制备方法ZL 201910150211.6
(5)一种无卤阻燃辐照交联电缆料及其制备方法ZL201711112169.6
(6)一种聚氨酯环氧树脂丙烯酸酯三元共聚树脂纳米水分散液的制备方法ZL201410503030.4
著作论文(代表作)
(1) Fang H.G.*(方华高), Zhao Y.P.,Xie X.X., Zhang F.,Xie, X.X., Zhu J.J., Ren S.H., Ding Y.S. * “Enhancing mechanical performance of boronic ester based vitrimers via intermolecular boron–nitrogen coordination” Polymer,2024, 311, 127587.
(2) Ren S.H., Zhou W.J., Song K., Gao X.C., Zhang X.M., Fang H.G.*(方华高), Li X.L., Ding Y.S. * “Robust, self-healing, anti-corrosive waterborne polyurethane urea composite coatings enabled by dynamic hindered urea bonds” Progress in Organic Coatings ,2023, 180, 107571.
(3) Ren S.H., Li Z.H., Zhou W.J., Zhu J.J., Zhao Y.P., Liu C., Fang H.G.*(方华高),Ding Y.S. * “Simultaneous robustness, reprocessing and self-healing of castor oil-based polyurethane vitrimers enabled by supramolecular nitrogen-coordinated dynamic covalent boronic ester ”Industrial Crops and Products ,2023, 206, 117738.
(4) Fang H.G.*(方华高),Zhang F., Zhao, Y.P., Gao, X.C., Zhou, W.J., Qi G.B., Ding Y.S., Winter, H. H* “Rheology of Smectic Liquid Crystalline Elastomers with Dynamic Covalent Bonds” Macromolecules ,2023,56,7808-7817
(5) Zhou W.J., Ren S.H., Zhang F., Gao X.C., Song K., Fang H.G.*(方华高), Ding Y.S. * “Reinforcement of boron–nitrogen coordinated polyurethane elastomers with silica nanoparticles” Polymer ,2022, 256, 125200.
(6) Fang H.G.*(方华高),Gao X.C., Zhang F., Zhou W.J., Qi G.B., Song K., Cheng S., Ding Y.S., Winter, H. H. * “Triblock Elastomeric Vitrimers: Preparation, Morphology, Rheology, and Applications” Macromolecules, 2022, 55, 10900-10911.
(7) Zhou W.J., Chen X., Yang K.J., Fang H.G.*(方华高), Xu Z.H., Ding Y.S.* “Achieving morphological evolution and interfacial enhancement in fully degradable and supertough polylactide/polyurethane elastomer blends by interfacial stereocomplexation” Applied Surface Science, 2022, 572, 151393.
(8) Zhang F., Ye W.J., Zhou W.J., Gao X.C., Fang H.G.*(方华高), Ding Y.S.* “Endowing thermally conductive and electrically insulating epoxy composites with a well-structured nanofiller network via dynamic transesterification participated interfacial welding” Industrial & Engineering Chemistry Research, 2022, 61, 3320-3328.
(9) Fang H.G.*(方华高), Yang K.J., Xie Q.Z., Chen X., Wu S.L., Ding Y.S.* “Influence of interfacial enantiomeric grafting on melt rheology and crystallization of polylactide/cellulose nanocrystals composites” Chinese Journal of Polymer Science, 2022, 40, 93-106.
(10) Fang H.G.*(方华高), Ye W.J., Yang K.J., Song K., Wei H.B., Ding, Y.S.* “Vitrimer chemistry enables epoxy nanocomposites with mechanical robustness and integrated conductive segregated structure for high performance electromagnetic interference shielding” Composites Part B-Engineering, 2021, 215, 108782.
(11) Song K., Ye W.J., Gao X.C., Fang H.G.*(方华高), Zhang Y.Q., Zhang Q., Li X.L., Yang S.Z., Wei H.B.*, Ding, Y.S.* “Synergy between dynamic covalent boronic ester and boron–nitrogen coordination: strategy for self-healing polyurethane elastomers at room temperature with unprecedented mechanical properties” Materials Horizons, 2021, 8, 216-223.
(12) Fang H.G.*(方华高), Ye W.J., Ding Y.S., Winter H. H.* “Rheology of the critical transition state of an epoxy vitrimer”Macromolecules, 2020, 53, 4855-4862.
(13) Fang H.G.* (方华高), Wang S.L., Ye W.J., Chen X., Wang X.H., Xu P., Li X.L., Ding Y.S.* “Simultaneous improvement of mechanical properties and electromagnetic interference shielding performance in eco-friendly polylactide composites via reactive blending and MWCNTs induced morphological optimization”, Composites Part B-Engineering, 2019, 178, 107452.
(14) Fang H.G.* (方华高), Chen X., Wang S.L., Cheng S., Ding Y.S.* “Enhanced mechanical and oxygen barrier performance in biodegradable polyurethanes by incorporating cellulose nanocrystals with interfacial polylactide stereocomplexation”, Cellulose, 2019, 26, 9751-9764.
(15) Xie Q.Z., Fang H.G.* (方华高), Wang S.L., Chen X., Zhou Y.Y., Li X.L., Cheng S., Ding Y.S.* “Thermal stability and crystallization behavior of cellulose nanocrystals and their poly(L-lactide) nanocomposites: effects of surface ionic group and poly(D-lactide) grafting”, Cellulose, 2018, 25, 6847–6862.
(16) Fang H.G.* (方华高), Wang H.L., Yu J.T., Wei H.B., Wang X.H., Ding Y.S.* “Largely improved mechanical properties of a biodegradable polyurethane elastomer via polylactide stereocomplexation”, Polymer, 2018, 137, 1-12.